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Abstract

In this paper, we present a fullwave description of

propagation and losses for some quasiplanar transmission

lines by using a quasi-analytical solution. This latter is

derived from a recently proposed modified transverse

resonance method (MTRM), in which an analytical

preprocessing has been introduced. The quasistatic

contribution is obtained by an entirely analytical solution ,

so the resultant system of linear equations is very efficient.

Furthermore, the resistive bounahy conditions as well as

the complex substrat permittivity are taken into account in

an intrinsic manner, leading to an accurate determination of

dielectric and conductor losses in lossy transmission lines.

Theoretical and experimental results will be presented

respectively for a lossless CPW and a lossy microsrnp line.

Introduction

Planar and quasiplanar transmission lines have been

subject to a large number of studies during last three decades,

by both quasistatic and fullwave methods. The most

representative has been colleted in the books edited by T. Itoh

[1] and by R. Sorrentino [2]. Several recent publications have

been focused on the derivation of very fast, then analytical or

quasi-analytical formulations. F. Medina and M. Homo have

studied the case of boxed microstrip line in layered medium

[3], and S.S. Bedair and I. Wolff have been interested in

supported coplanar waveguide [4]. Due to an analytical

preprocessing, drastic improvement of accuracy and the CPU

time has been achieved by Medina and Homo in [3]. This

makes the formulation suitable for microwave and millimeter-

wave CAD purpose. It will be nevertheless noted that both [3]

and [4] deal with quasistatic cases; moreover, the dielectric and

conductor losses have not been considered.

The fullwave characterization we propose is suited for

both propagation and losses for some commonly used

quasiplanar transmission lines, by using the modified

transverse resonance method (MTRM) [5]. An analytical

preprocessing is introduced, allowing the extraction of the

static contribution. The resolution of resultant linear equations

system is very fast since the matrix elements are of quasi-

analytical type. An analysis program has been developed in

FORTRAN on a PC computer. The theoretical results for a

lossless supported coplanar waveguide (SCPW) and a lossy

microstrip line are in good agreement with either previously

published results or experiments made in our Laboratory.

Formulation
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Fig. 1 General configuration stndied by proposed formulation

By considering the structure of Fig, 1, the modified

transverse resonance method (MTRM) is applied as follows:

1) the external surface current densities .JS(Xl-A,Y) and

Js(x2+A,y) are related to the tangential electric fields Et(xl,yjl
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and IIt(X2,Y) at h1+h2 and h1+h2+t via associat~ suscePt~ce

operators [5]. Any kind of boundary conditions (electric or

magnetic wall, open condition or complex resistive boundary

condition for finite conductivity metallization), as well as the

complex pertnittivity, are taken into account in the formulation

of suceptance operator concerned;

2) the internal surface current densities .lS(X1+A,Y), .lS(X2-A,Y)

are functions of Et(xl, y) and ~t(x2,y), by m~ing use of the

transmission matrix of the parallel-plate waveguide (PPW)

model in the metallization tegion (xl<x <x2);

3) the continuity of surface current densities in the aperture

regions ( 0,5(A-w-2s)<Y<0.5 (A-w), 0.5(A+w)<Y<0.5(A+w+2s) ) at

interfaces xl and x2 leads to an integral equation with Et(xl, y)

and Et(x2,y) as unknOWn ;

4) the application of the Ritz-Galerkin method by developing

Et(xl,y) ad Et(x2,y) in Chebychev polynomials of first and

second kind with appropriate edge condition leads to a system

of linear equations for which a non trivial solution allows a

complete ftdlwave characterization of the structure of Fig. 1.

Due to their advantages, Chebychev polynomials has

been adopted as trial function by many authors [1-3,6]. These

advantages are : first, their Fourier transform are analytical

(Bessel functions), then no numerical integration is needed ;

second, accurate results can be achieved by using only few

Chebychev polynomials, the system of linear equations is then

of very moderate size.

Inspite of these advantages, the computation efficiency is not

satisfactory because of the infinite summation of Fourier type

in each matrix element. Indeed, due to the static contribution,

as mentioned in [3], the convergence is very poor for the

concerned series, and 4(?00 terms are used in the alternative

formulation of [4].

By extracting from these series the quasistatic part which is

independent of frequency, we obtain a very quickly

convergent serie which can be truncated after about ten terms.

The quasistatic part being evaluated just once for each

structure, the resultant system is very efficient.

This quasistatic solution is obtained by tending the frequency

and the propagation constant towards zero. Because of the

Bessel functions involved, this sene can only be evaluated

numerically, as in a similar formulation for boxed tnicrostrip

[6].

In our case, we have obtained an @t “relv analvztcal sol ution by

replacing the Bessel function by it’s large argument

approximation with (k.r)-1’2 and (k.r)”3’2 terms. The

difference becomes noticeable only for arguments less than the

fiist root of Jo(k.r), which corresponds generally to the fiist

three terms of the original serie in most commonly used

microstrip line case. Furthermore, better accuracy can be

achieved since no trttncature is needed for the static part of each

matrix element.

An analysis program has been developed on a PC

computer. When considering the cases of no losses (dielecrnc,

conductor, leakage) nor complex modes, an automatic scanning

procedure on the entire Re (~) axis is used. This procedure

consists in: 1) determining the poles of characteristics equation

; 2) researching the existance of one or two roots between two

poles by using a quadratic procedure, and determining for each

toot the sub-intetval for which the characteristic equation varies

quasi-linearily ; 3) using the classical secant method to

determine accurately the roots of characteristic equation.

This automatic scanning procedure can be very useful for

determining the whole mode spectrum when characterizing

ttniaxial discontinuities in quasiplanar transmission lines by the

Mode-Matching method. For complex speetra, this procedure

allows a fast localization of these spectra by observing the

modes disappearance phenomena; a scanning in the complex y

plane can then be used.

Results

Two examples are given here to illustrate the efficiency of

the proposed solution. In both case, the effective dielecrnc

constant and the characteristic impedance are obtained by using

different values of M, the number of trial functions which

determine the marnx size, and N, the truncation number of the
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Table I

s=200pm, w.120w, h1=h3=10mm,

h2=200pm, &r1=3.78, ~=12.9,&r3=l

Resulfs of [4] with 4000 spectraf terms are:

e@.2932, z@7.97

Table II

convergence of &.E and L for boxed

microsfriD at hz~2 = 0.01

w=lmm, hl=o, h2=lmm, h3=9mm

Erl=l, ~=12.5, %3=1

M N 5 10 15 20 25 30 40 50

2 ‘eff 6.6878 6.4165 6.3169 6.2948 6.2915 6.2912 6.2912 6.2912

& 68.669 70.102 70.652 70.776 70.794 70.796 70.796 70.796

I--71u t I i I 1 I { t

I 6.6879 I 6.4175 16.3186 16.2969 I 6.2937 I 6.2934 I 6.2934 I 6.2934 I
G 67.234 68.676 69.250 69.388 69.410 69.412 69.412 69.412

4 ‘eff 6.6879 6.4175 6.3186 6.2968 6.2937 6.2934 6.2933 6.2933

% 67.112 68.551 69.125 69.262 69.284 69.286 69.286 69.286

m
M N 5 10 15 20

3 && 8.4734 8.4852 8.4850 8.4849

% 50.709 50.309 50.294 50.292

4 && 8.4777 8.4500 8.4478 8.4477

% 51.724 48.404 48.260 48.250

5 &e@ 8.4161 8.4501 8.4480 8.4478

% 56.538 49.045 48.487 48.455

modified serie. The results are given respectively in Table I for

a SCPW, and in Table II for a boxed microstrip line with zero

and Ipm strip thickness.

We can see that the marnx elements converge more quickly for

microstrip line than for SCPW, since only 15 serie terms are

needed for rnicrostrip line to achieve a five digit accuracy for

both &d and ~, when 25 terms are necessary for SCPW.

This is related to the small aspect ratio (r = s/A) of SCPW.

In contrast, to achieve an accuracy of five digits for Eeti and

three digits for ~, only 3 trial functions are sufficient for

SCPW, which results a 5x5 matrix equation, when 4 trial

functions are needed for microstrip lines.

By using 10 series terms and 4 trial functions in the

automatic scanning procedure, the computation of 10 modes

(propagating and evanescent) in a boxed microsrnp at 100

frequencies takes about 5 minutes on an. Intel-486 based PC

computer.

Dielecrnc and ground plane conductor losses have also

been studied in a boxed microstip line by varying the dielectric

loss tangents and the ground plane (considered as bulky)

conductivity. The results of propagation constant and

normalized losses are given in Fig.2, compared to those of [71

for an open microstrip line. The results are very close each

other for the small losses case, also for large dielectric losses

EEt=l=
50.264 49.499 49.468 49.467

8.4707 8.4354 8.4309 8.4308

53.827 47.850 47.560 47.553

8.2857 8.4358 8.4313 8.4312

63.931 48.934 47.882 47.859

case. Our results for no loss propagation constan~ dielectric

losses with tani3=10-3, and ground plane losses with O=am are

respectively 0.8662 cm-l, 3.789E-4 cm-l and 1.125E-4 cm-l,

while those given in [7] are 0.866 cm-l, 3.766E-4 cm-l and

1.120E-4 cm-l. The difference of ground plane conductor

losses becomes important in these two structures for moderate

conductivities. All results presented here clearly illustrate the

limit of the classical perturbation method in lossy transmission

line studies.
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Fig.2 Ground plane conductor losses (- - -) and dielectric

losses (_) of a boxed microstrip line at 3GHz ; Comparison

with results taken from [7] ( o, x) for an open microstrip line.

w=5mm, hl=o, h2=l.6mm, h3=20mm, Grl-l, w=2.2, w=l, A=~Omm
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l%tally, a lossy rnicrostrip line has been studied by using

the proposed formulation and also a perturbation formulation.

The thickness of the strip and of the ground plane are the same,

and comparable to the skin depth in the working frequency

range. The theoretical results of effective dielectric constant and

losses are shown in Fig.3, and compared to measurements

carried out in our Laboratory on a vector network analyzer

(VNA). Better agreement has been obtaincxl by this formulation

than the perturbation analysis, as can be waited in a moderately

lossy structure.
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Fig.3 Comparison between measurement ~), this
formation (- - -) and perturbation theory (_._._)

for a lossy microstrip line.
(a) effective dielectric constant; (b) conductors losses;

w=2101.un, hl=O, h2=635~, h3=10mm,

%l=l? %2=9.s, %3=1, t*=lown, U=8ES s/m.

Conclusion

A quasi-analytical formulation has been presented for

characterizing some commonly used quasiplanar transmission

lines. This formulation is derived from a fullwave method,

namely, the modified transverse resonance methcxl (MTRM). It

has been applied with success to both coplanar waveguide and

boxed microstrip line. The numerical efficiency of this method

allows the computation of mode spectra, propagating and

evanescent, in a quasiplanar structure in very short CPU time

on a PC computer, making this method well suited to

discontinuity analysis and other CAD purposes.
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