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Abstract

In this paper, we present a fullwave description of
propagation and losses for some quasiplanar transmission
lines by using a quasi-analytical solution. This latter is
derived from a recently proposed modified transverse
resonance method (MTRM), in which an analytical
preprocessing has been introduced. The quasistatic
contribution is obtained by an entirely analytical solution ,
so the resultant system of linear equations is very efficient.
Furthermore, the resistive boundary conditions as well as
the complex substrat permittivity are taken into account in
an intrinsic manner, leading to an accurate determination of
dielectric and conductor losses in lossy transmission lines.
Theoretical and experimental results will be presented

respectively for a lossless CPW and a lossy microstrip line.

Introduction

Planar and quasiplanar transmission lines have been
subject to a large number of studies during last three decades,
by both quasistatic and fullwave methods. The most
representative has been colleted in the books edited by T. Itoh
[1] and by R. Sorrentino [2]. Several recent publications have
been focused on the derivation of very fast, then analytical or
quasi-analytical formulations. F. Medina and M. Horno have

studied the case of boxed microstrip line in layered medium

[3], and S.S. Bedair and I. Wolff have been interested in

supported coplanar waveguide [4]. Due to an analytical
preprocessing, drastic improvement of accuracy and the CPU
time has been achieved by Medina and Horno in {3]. This
makeg the formulation suitable for microwave and millimeter-
wave CAD purpose. It will be nevertherless noted that both {3]

and [4] deal with quasistatic cases ; moreover, the dielectric and
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conductor losses have not been considered.

The fullwave characterization we propose is suited for
both propagation and losses for some commonly used
quasiplanar transmission lines, by using the modified
transverse resonance method (MTRM) [5]. An analytical
preprocessing is introduced, allowing the extraction of the
static contribution. The resolution of resultant linear equations
system is very fast since the matrix elements are of quasi-
analytical type. An analysis program has been developed in
FORTRAN on a PC computer. The theoretical results for a
lossless supported coplanar waveguide (SCPW) and a lossy
microstrip line are in good agreement with either previously

published results or experiments made in our Laboratory .

Formulation

Boundary Conditions
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Fig.1 General configuration studied by proposed formulation

By considering the structure of Fig.1, the modified

transverse resonance method (MTRM) is applied as follows :

1)the external surface current densities Jg(x4-A,y) and

Js(Xy+Ay) are related to the tangential electric fields E(x,.y)
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and E(x,,y) at hy+h, and h)+hy+t via associated susceptance

operators [5]. Any kind of boundary conditions (electric or
magnetic wall, open condition or complex resistive boundary
condition for finite conductivity metallization), as well as the
complex permittivity, are taken into account in the formulation

of suceptance operator concerned ;

2) the internal surface current densities J((x1+4,y), J(x5-A.y)
are functions of Ey(x;,y) and E(x,,y), by making use of the

transmission matrix of the parallel-plate waveguide (PPW)

model in the metallization region (xj<x <x;);

3)the continuity of surface current densities in the aperture
regions ( 0.5(A-w-25)<y<0.5(A-w), 0.5(A+w)<y<0.5(A+w+2s) ) at
interfaces x, and x, leads to an integral equation with E(x,,y)

and E((x,.y) as unknown ;

4) the application of the Ritz-Galerkin method by developing
E(x1,y) and E(x,,y) in Chebychev polynomials of first and

second kind with appropriate edge condition leads to a system
of linear equations for which a non trivial solution allows a

complete fullwave characterization of the structure of Fig.1.

Due to their advantages, Chebychev polynomials has
been adopted as trial function by many authors [1-3,6]. These
advantages are : first, their Fourier transform are analytical
(Bessel functions), then no numerical integration is needed ;
second, accurate results can be achieved by using only few
Chebychev polynomials, the system of linear equations is then
of very moderate size.

Inspite of these advantages, the computation efficiency is not
satisfactory because of the infinite summation of Fourier type
in cach matrix element. Indeed, due to the static contribution,
as mentionned in [3], the convergence is very poor for the
concerned series, and 4000 terms are used in the alternative
formulation of [4].

By extracting from these series the quasistatic part which is
independant of frequency, we obtain a very quickly

convergent serie which can be truncated after about ten terms.
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The quasistatic part being evaluated just once for each
structure, the resultant system is very efficient.

This quasistatic solution is obtained by tending the frequency
and the propagation constant towards zero. Because of the
Bessel functions involved, this serie can only be evaluated
numerically, as in a similar formulation for boxed microstrip
[6].

In our case, we have obtained an entirely analytical solution by

replacing the Bessel function by it's large argument

approximation with (k.r)'l/ 2 and (k.r)'3/ 2 terms. The
difference becomes noticeable only for arguments less than the

first root of Jy(k.r), which corresponds generally to the first

three terms of the original serie in most commonly used
microstrip line case. Furthermore, better accuracy can be
achieved since no truncature is needed for the static part of each
matrix element.

An analysis program has been developed on a PC
computer. When considering the cases of no losses (dielectric,

conductor, leakage) nor complex modes, an automatic scanning

procedure on the entire Re (Y2 ) axis is used. This procedure
consists in : 1) determining the poles of characteristics equation
; 2) researching the existance of one or two roots between two
poles by using a quadratic procedure, and determining for each
root the sub-interval for which the characteristic equation varies
quasi-linearily ; 3) using the classical secant method to
determine accurately the roots of characteristic equation.

This automatic scanning procedure can be very useful for
determining the whole mode spectrum when characterizing
uniaxial discontinuities in quasiplanar transmission lines by the
Mode-Matching method. For complex spectra, this procedure

allows a fast localization of these spectra by observing the

modes disapearance phenomena ; a scanning in the complex Y
plane can then be used.

Results
Two examples are given here to illustrate the efficiency of
the proposed solution. In both case, the effective dielectric
constant and the characteristic impedance are obtained by using
different values of M, the number of trial functions which

determine the matrix size, and N, the truncation number of the



Table I M [N 5 10 15 20 25 30 40 50
Z |e 6.6878 | 64165 | 63160 |6.2048 | 62915 | 62912 | 62912 | 6.2912
Convergence of Eofy. and ZQ for eff
P Zg | 68.669 | 70.102 |70.652 |70.776 | 70.794 | 70.79 | 70.79 | 70.796
SCPW at 1GHz
=200y, w=120m, hyh=10mm 3 |eqr | 66879 | 64175 | 63186 |6.2969 | 62937 | 62934 | 62934 | 6.2934
hy=200um, £47=3.78, £,p=12.9,8,3=1 Zy | 67234 | 68.676 |69.250 |60.388 | 69410 | 69412 | 69412 | 69.412
'y . '? - a3 —
Results of [4] with 4000 spectral torms are 4 e | 66879 | 64175 | 63186 |6.2968 | 6.2037 | 62934 | 6.2933 | 6.2933
€e=6.2932, Z(=67.97 Zo | 67.112 | 68551 |69.125 |69.262 | 69.284 | 69.286 | 69.286 | 69.286
=0 i=lum
Table II M N[5 10 15 20 5 10 15 20
Convergence of € pand Zo forboxed | 3 | fef | 84734 | 848 |84850 84849 | [84321 |84695 | 84691 | 8469
o Zg | 50.709 | 50309 |50294 |50292 | [5026a |49.499 | 49.468 | 49.467
trip at h =0.01
microstrip at hyfAg = 0.01 4 |eqr | 84777 | 84500 |8.4478 84477 | [84707 |84354 | 84309 | 84308
Zo | 51724 | 48404 |48.260 |48250 | [53827 |47.850 | 47.560 | 47553
w=1mm, hj=0, hp=1mm, h3=9mm
L 5 |eer | 84161 | 84501 |8.4480 |8.4478 | (82857 |84358 | 84313 | 84312
€r1=1, = N =,
r1=h =i, 3 Zo | 56.538 | 49.045 |48487 48455 | |63931 |48.934 |47.882 | 47.859

modified serie. The results are given respectively in Table I for
a SCPW, and in Table II for a boxed microstrip line with zero
and 1pm strip thickness.

We can see that the matrix elements converge more quickly for
microstrip line than for SCPW, since only 15 serie terms are

needed for microstrip line to achieve a five digit accuracy for
both €. and Zj, when 25 terms are neccessary for SCPW.

This is related to the small aspect ratio (r = s/A) of SCPW.

In contrast, to achieve an accuracy of five digits for €5 and
three digits for Zy, only 3 trial functions are sufficient for

SCPW, which results a 5x5 matrix equation, when 4 trial

functions are needed for microstrip lines.

By using 10 series terms and 4 trial functions in the
automatic scanning procedure, the computation of 10 modes
(propagating and evanescent) in a boxed microstrip at 100
frequencies takes about 5 minutes on an. Intel-486 based PC

computer .

Dielectric and ground plane conductor losses have also
been studied in a boxed microstrip line by varying the dielectric
loss tangents and the ground plane (considered as bulky)
conductivity. The results of propagation constant and
normalized losses are given in Fig.2, compared to those of [7}
for an open microstrip line. The results are very close each

other for the small losses case, also for large dielectric losses
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case. Our results for no loss propagation constant, dielectric
losses with tan8=10", and ground plane losses with =0, are

respectively 0.8662 cm’’, 3.789E-4 cm™! and 1.125E-4 cm™?,
while those given in [7] are 0.866 cm’l, 3.766E-4 cm™ and
1.120E-4 cm’!. The difference of ground plane conductor

losses becomes important in these two structures for moderate
conductivities. All results presented here clearly illustrate the
limit of the classical perturbation method in lossy transmission

line studies.
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Fig.2 Ground plane conductor losses (- - -) and dielectric
losses (___) of a boxed microstrip line at 3GHz ; Comparison
with results taken from [7] ( o, X) for an open microstrip line.
w=5mm, h1=0, hy=1.6mm, h3=20mm, er1=1, erp=2.2, e;3=1, A=$0mm



Finally, a lossy microstrip line has been studied by using
the proposed formulation and also a perturbation formulation.
The thickness of the strip and of the ground plane are the same,
and comparable to the skin depth in the working frequency
range. The theoretical results of effective dielectric constant and
losses are shown in Fig.3, and compared to measurements
carried out in our Laboratory on a vector network analyzer
(VNA). Better agreement has been obtained by this formulation
than the perturbation analysis, as can be waited in a moderately
lossy structure.

9 T T

a0
L

~

Effective Dielectric Constant €¢
g}
1
]

Frequency (GHz)

Loss Constant (Neper.m'l)

2 4 6
Frequency (GHz)

(®

Fig.3 Comparison between measurement (__), this
formulation (- - -) and perturbation theory (_._. )
for a lossy microstrip line.

(a) effective dielectric constant; (b) conductors losses ;
w=210um, hy=0, hy=635um, h3=10mm,
£r1=1, £=9.8, £3=1, I=d=10um, 6=8E5 S/m.
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Conclusion

A quasi-analytical formulation has been presented for
characterizing some commonly used quasiplanar transmission
lines. This formulation is derived from a fullwave method,
namely, the modified transverse resonance method (MTRM). It
has been applied with success to both coplanar waveguide and
boxed microstrip line. The numerical efficiency of this method
allows the computation of mode spectra, propagating and
evanescent, in a quasiplanar structure in very short CPU time
on a PC computer, making this method well suited to

discontinuity analysis and other CAD purposes.
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